Effortless root pass and thin sheet welding

Innovation

Effortless root pass and thin sheet welding

18. Oktober 2023

Kemppi has launched three new MAX welding processes (MAX Cool, MAX Speed and MAX Position) for the Master M and X5 FastMig product families to improve productivity, quality and usability in the challenging welding applications. MAX Cool lowers the heat input and operates in a short arc area so it’s ideal for steel welding and MIG brazing. The welding characteristics of MAX Cool have been fine-tuned to allow high-quality root pass and thin sheet welding.

Antti Kahri

Modified short arc welding

MAX Cool provides accurate welding current control. The principle of the process is shown in Figure 1. After the short circuit dynamics typical for short arc welding, when the short circuit is released, the welding current is quickly brought down to a low level to minimize the amount of spatter generated. A forming pulse is then applied, the purpose of which is to give the weld the desired shape through a suitable, precisely controlled heat input. Apart from the wire feed speed, the only parameter that can be adjusted is the heat fine-tuning, which influences the size of the forming pulse and thus the pass shape.

Figure 1. Behaviour of the welding current and metal transfer in the MAX Cool process. The orange knob and numerical values illustrate the effect of heat fine-tuning.

One welding process, many benefits

Compared to the traditional short arc or pulse welding the MAX Cool process reduces the heat input minimizing the welding deformation. With low heat input and precise arc control, the weld pool is easily controllable, giving it excellent position welding properties. In addition, welding even large air gaps is easily manageable, and there’s no collapsing of the weld pool at any point. Air gaps of up to 12mm have been successfully welded in the welding tests. Compared to the traditional short arc welding MAX Cool produces less spatter in many applications.

Efficient and flexible root pass welding

MAX Cool can be used to weld a wide variety of root pass applications. The most common types of groove welds are I and V-grooves. Typically, the I-groove can be welded up to a material thickness of 3-4 mm completely in one pass (Figure 2). The V-groove is used for thicker material. The weld pool is so controllable that root pass welding is possible with various air gaps thanks to the low heat input. The minimum air gap can be 1-2mm and there is no upper limit. For welding smaller air gaps, direct movement can be used in many cases. Weaving should be used for larger air gaps. The 0 setting of the process heat fine-tuning is optimized for root pass welding. Typically, the user needs to adjust only the wire feed speed.

Figure 2. Full penetration butt weld using one pass without root reinforcement (I groove). Base material 3mm S 355. Filler- wire 1.2mm OK Autrod 12.51. Shielding gas Ar + 18% CO2

Unlike a traditional short arc welding, MAX Cool allows to weld root passes from top to bottom (welding position PG) without the risk of welding defects. This is typically the most efficient welding position. However, using Max Cool all other positions are possible thanks to the good weld pool control. Traditional short arc welding typically requires welding from the bottom upwards (welding position PF) resulting in slow progress. That’s why the root pass welding is much more efficient with MAX Cool. Compared to the pulse MAG welding, the main advantage of MAX Cool is that there is no need for the root reinforcement. The overall productivity of the traditional root pass welding (i.e. TIG welding) is very low. MAX Cool is a very efficient choice by comparison. Unlike some modified short arc welding processes, MAX Cool doesn’t require a separate measuring cable attached to the workpiece.

High-quality joining of thin sheets by welding and arc brazing

MAX Cool is also ideal for thin sheet welding thanks to its reduced heat input. Particularly good thin sheet welding applications are overlap, corner (figure 3) and butt joints because a good pass shape can be achieved with a very low heat input. For example, achieving a good pass shape may require a higher heat input in fillet welds in which case MAX Cool’s heat fine-tuning can be used. In addition to the above, MAX Cool is ideal for thin sheet applications in which the air gaps have been created for one reason or another.

Figure 3. Corner weld. Base material 1mm S 355. Filler wire 1.0mm OK Autrod 12.51. Shielding gas Ar + 18% CO2.

Based on welding tests, MAX Cool process’ heat input at the same wire feed rate is typically 15-20% lower compared to a traditional short arc welding and 30% lower compared to a pulsed MAG welding. That’s why it’s significantly easier to avoid burn-through and reduce a deformation during welding. Especially when welding larger pieces, the deformations are more visible which can make it much easier to manufacture the final product.

MAX Cool is also designed to work as a MIG brazing process with CuSi3 and CuAl8 filler materials. The MIG brazing is particularly used for joining galvanized thin sheets as the method doesn’t burn the zinc layer off the surfaces of the pieces (figure 4). MAX Cool MIG brazing can be used for a wide range of thin sheet MIG brazing applications, similar to the thin sheet welding applications mentioned above. The only significant differences are that the MIG brazing typically uses higher travel speeds and the shielding gas is pure argon.

Figure 4. MIG brazed corner weld. Base material galvanized 1mm structural steel. Filler wire 1.0mm CuSi3. Shielding gas: pure argon

Summary

The MAX Cool short arc welding process uses precise welding current control and the reduced heat input. Its welding characteristics are designed to meet the requirements of both root pass and thin sheet welding. The reduced heat input makes it easy to control the weld pool in the root pass welding in different positions and with varying air gaps. Even the thinnest sheets can be welded and MIG brazed with significantly less risk of burn-through and with less deformations compared to more traditional MIG/MAG processes. Unlike many other modified short arc welding processes, MAX Cool is also available for compact (Master M 355 & 358) and portable (Master M 323) welding machines.

Read more about the three new MAX welding processes.

Antti Kahri
Author

Antti Kahri

A respected expert in the field of welding, who tragically passed away in early June 2025 while pursuing his passion on a fly fishing trip. As a Welding Engineer on Kemppi Oy’s Welding Team, he held the prestigious International Welding Engineer (IWE) qualification and brought over a decade of experience to developing advanced welding characteristics for TIG, MIG/MAG, and MMA welding machines, including the renowned X8 MIG Welder and MasterTig. Known for his deep expertise and commitment to welding excellence, he was passionate about enhancing the quality and efficiency of welding through user-friendly innovations. His legacy lives on in the technology he helped shape and in the inspiration he offered to colleagues and the wider welding community.

Weitere Blog-Beiträge

Welding value with digitalization

Welding value with digitalization

Did you know, that a large oil rig may involve more than 100 000 welds? Or that building an oil rig employs dozens of contractors in the most demanding working conditions?

Digitalisierung

Das Doppelpulsverfahren macht das WIG-Schweißen effizienter - auch bei anspruchsvollen Materialien

Das Doppelpulsverfahren macht das WIG-Schweißen effizienter - auch bei anspruchsvollen Materialien

WIG-Schweißen ist ein häufig verwendetes Schweißverfahren für Metalle, die als schwierig zu schweißen gelten, wie z. B. Titan. Es ist die einfachste und sicherste Methode, um mit geringen Investitionen in die Ausrüstung eine hohe Qualität zu erzielen. Die Anzahl der erforderlichen Schweißlagen macht das WIG-Schweißen jedoch langsam und mühsam, und die Produktivität leidet. Die Doppelpulsfunktion der neuen MasterTig von Kemppi wurde entwickelt, um das WIG-Schweißen effizienter zu machen.

Innovation

What to consider when buying a welding machine?

What to consider when buying a welding machine?

Once a welding machine has reached the end of its life cycle, or a company expands its operations, it's time to find a new best friend for the welder. There is a wide range of welding machines on the market, and in many cases, comparing different brands and models is challenging. What kind of things should be considered when purchasing a welding machine?

Schweiß-ABC

Lifecycle assessment in welding: A data-driven path to sustainability

Lifecycle assessment in welding: A data-driven path to sustainability

Lifecycle assessment (LCA) is a systematic method for evaluating a product’s environmental impact throughout its lifespan—from raw material extraction and manufacturing to usage and end-of-life disposal.

Manuelles Schweißen

Kemppi's advanced welding processes: MIG/MAG welding

Kemppi's advanced welding processes: MIG/MAG welding

One of the most important elements in developing welding equipment has long been improving welding processes and creating new process variations. Modern measurement and arc control methods have made a wide range of variations in the arc welding process possible. These advanced welding processes significantly improve welding production efficiency and weld quality. This article presents the special processes and operations developed by Kemppi for MIG/MAG welding.

Schweiß-ABC, Manuelles Schweißen

Wie die Schweißmanagement-Software WeldEye den Standard für die Rückverfolgbarkeit von Schweißarbeiten setzt

Wie die Schweißmanagement-Software WeldEye den Standard für die Rückverfolgbarkeit von Schweißarbeiten setzt

Die Rückverfolgbarkeit von Schweißnähten wird zu einer immer wichtigeren Anforderung in Branchen, in denen Sicherheit, Qualität und Konformität an erster Stelle stehen.

Digitalisierung

Abonnieren Sie unseren Newsletter und erhalten Sie immer aktuelle Nachrichten von Kemppi.

Mit der Anmeldung erklären Sie sich damit einverstanden, Marketing-E-Mails von Kemppi zu empfangen.

Der Wegbereiter des Lichtbogenschweißens

Kemppi ist das wegweisende Unternehmen in der Schweißbranche. Wir haben es uns zur Aufgabe gemacht, Qualität und Produktivität des Schweißens durch kontinuierliche Weiterentwicklung des Lichtbogens zu steigern. Durch eine ressourcenschonende Produktion leisten wir unseren Beitrag für eine grünere Welt. Kemppi liefert nachhaltige hochmoderne Produkte, digitale Lösungen und Service für Profis in Industrie- sowie Handwerksbetrieben. Die Benutzerfreundlichkeit und Zuverlässigkeit unserer Produkte sind unser Leitmotiv, um Ihre Produktivität zu steigern. Unser hochqualifiziertes Partnernetzwerk in über 70 Ländern gewährleistet Unterstützung und Know-how vor Ort. Kemppi hat seinen Hauptsitz in Lahti, Finnland, beschäftigt über 650 Profis in 16 Ländern und verzeichnete im Jahr 2023 einen Umsatz von 209 Mio. EUR.

Kemppi – Designed for welders

Copyright © 2025 Kemppi Oy